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IMPATIENCE IN MATCHING

BLOOD ALLOCATION PAIRED KIDNEY EXCHANGE

HOW DOES IMPATIENCE IMPACT MATCH RATE?

THE RELATIONSHIP BETWEEN PARAMETERS

NEED TO CONSIDER: TIME TO ABANDON & TIME TO MATCH
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HOW DOES IMPATIENCE IMPACT MATCH RATE?

1. CLASSIFY SETTINGS based on how impatience
impacts match loss

[OPERATING REGIMES]

2. IDENTIFY KEY DETERMINANTS of match loss from
impatience

[SCALING LAWS]
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RELATED LITERATURE (A SAMPLE): MATCHING AND SINGLE-SIDED QUEUES WITH ABANDONMENT

EXACT RESULTS
• Transient and steady-state performance of a two-sided queue (Conolly
et al. 2002, Afèche et al. 2014, Diamant and Baron 2019)

• Performance analysis / stability region under specific policy (Castro et al.
2020b, Zubeldia et al. 2022)

APPROXIMATIONS (MOSTLY HEAVY TRAFFIC)
• Performance analysis and control of a two-sided queue (Liu et al. 2015,
Büke and Chen 2017, Chen and Hu 2020, Aveklouris et al. 2023)

• Performance analysis and control of a single-sided queue (Ward and
Glynn 2003, Lee and Ward 2019)

• Control policies for a matching network (Aveklouris et al. 2021, Collina
et al. 2020, Aouad and Saritaç 2022, Castro et al. 2020a, Wang et al. 2022)

ALL PARAMETERS ARE EQUALLY
IMPORTANT

IMPOSES SPECIFIC RELATIONSHIP
ON PARAMETERS

OUR FOCUS: SIMPLE MODEL, UNIVERSAL RESULTS (IN PARAMETERS) & GENERAL CHARACTERIZATION
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THE SIMPLEST MATCHING MODEL: TWO-SIDED QUEUE WITH EXPONENTIAL DISTRIBUTIONS

λc λs

θc θs

CUSTOMERS
(DEMAND)

SERVERS
(SUPPLY)

Qc Qs

MATCH RATE WITHOUT ABANDONMENT (UPPER BOUND):
min {λc, λs} = λc

LABEL: λc ≤ λs

UTILIZATION (MEASURE OF EXCESS CAPACITY):
ρ = λc/λs

ACTUAL MATCH RATE:
d = limt↑∞

1
tE[D(t)]

ARRIVALS = MATCHES + ABANDONMENTS:
λc = d+ θcE[Qc]

Definition (Cost-of-Impatience, CoI).

CoI = No-abandonment match rate (λc)− Actual match rate (d) = θcE[Qc] = θsE[Qs]− (λs − λc)
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HOW DOES IMPATIENCE IMPACT MATCH RATE?

1. CLASSIFY SETTINGS based on how impatience
impacts match loss

[OPERATING REGIMES]

2. IDENTIFY KEY DETERMINANTS of match loss from
impatience

[SCALING LAWS]
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OPERATING REGIMES: A CLASSIFICATION BY RELATIVE IMPATIENCE

Customer Impatience

Se
rv
er
Im
pa
tie
nc
e

Patient-Customer Impatient-Customer

Im
patient-Server

Patient-Server

PATIENT VS. IMPATIENT: MEASURE OF MEAN PATIENCE RELATIVE TO EXCESS CAPACITY (ρ = λc/λs)

THE COI BEHAVES DIFFERENT IN EACH OPERATING REGIME 6
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INTUITION:
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OPERATING REGIMES: A CLASSIFICATION BY RELATIVE IMPATIENCE
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HEAVY TRAFFIC:
(Liu et al., 2015)

ρn

1−ρn ≈
√

λn
c

θn
c
and 1

1−ρn ≈
√

λn
s

θn
s

for θ > 0 and
λn → λ, nθn → θ

PATIENT VS. IMPATIENT: MEASURE OF MEAN PATIENCE RELATIVE TO EXCESS CAPACITY (ρ = λc/λs)

THE COI BEHAVES DIFFERENT IN EACH OPERATING REGIME 6



KEY DETERMINANTS OF MATCH LOSS FROM IMPATIENCE: SNEAK PEAK

Theorem (Cost-of-Impatience Scaling by Operating Regime).

Customer Impatience

Se
rv
er
Im
pa
tie
nc
e

Patient-Customer Impatient-Customer

Im
patient-Server

Patient-Server
θmin

ρ

1− ρ

√
θminλc

√
θminλce

−λs
θs

(1−ρ)2H(ρ)θc
ρ

1− ρ

√
θs
λs

1
1− ρ

e−
λs
θs

(1−ρ)2H(ρ)

SCALING LAW, S ∼ COI: CHARACTERIZE HOW THE COI CHANGES AS A FUNCTION OF PARAMETERS
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HOW DOES IMPATIENCE IMPACT MATCH RATE?

1. CLASSIFY SETTINGS based on how impatience
impacts match loss

[OPERATING REGIMES]

2. IDENTIFY KEY DETERMINANTS of match loss from
impatience

[SCALING LAWS]
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SCALING LAW DEFINITION: A UNIVERSAL APPROXIMATION

Definition (Scaling Law).

CoI = λc − d ∼ S

when, for “all” parameter combinations,

1
Γ

≤ CoI(λ, θ)
S(λ, θ) ≤ Γ

for some function S(λ, θ) and a constant Γ ≥ 1 that does not depend on λ = (λc, λs), θ = (θc, θs).
Recall that d denotes the actual match rate.

SCALING LAW: CHARACTERIZE HOW THE COI CHANGES AS A FUNCTION OF PARAMETERS

GOAL: IDENTIFY THE RELATIVE IMPORTANCE OF EACH PARAMETER ON MATCH LOSS
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UNIVERSAL COI SCALING LAW

Theorem (Universal Cost-of-Impatience Scaling).

CoI ∼ S

= θcmin

{
ρ

1− ρ
,

√
λc

θc

}(
1+

[
1+ ρ

1− ρ

θc
λc

min

{
ρ

1− ρ
,

√
λc

θc

}]√
λs

θs
(1− ρ)e

λs
θs

(1−ρ)2H(ρ)

)−1

where ρ = λc/λs and H(ρ) =
∑∞

n=1
1

n(n+1) (1− ρ)n−1 .

EXACT COI: CoI = θc
∑∞

n=1 n
∏n

i=1
λc

λs+iθc

(
1+

∑∞
n=1

∏n
i=1

λc+iθs
λs

+
∑∞

n=1
∏n

i=1
λc

λs+iθc

)−1

PROOF CONCEPT: COUPLING ARGUMENTS AND EXPANSIONS OF EXPLICIT EXPRESSIONS TO UPPER- AND
LOWER-BOUND STEADY-STATE DISTRIBUTIONS
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UNIVERSAL COI SCALING LAW: AN EXAMPLE

IMPATIENT-CUSTOMER, IMPATIENT-SERVER REGIME:

λc = 90, λs = 100, θs = 30

CoI Approximation Ratio

Exact CoI ∼ 1

Maximum CoI: λc
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SCALING LAW, S : CHARACTERIZE HOW THE COI CHANGES AS A FUNCTION OF PARAMETERS

COI APPROXIMATION RATIO = S / Exact CoI
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“WINNER-TAKE-ALL” COMPETITION BETWEEN EXCESS CAPACITY AND IMPATIENCE

Theorem (Cost-of-Impatience Scaling by Operating Regime).
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“WINNER-TAKE-ALL” COMPETITION BETWEEN EXCESS CAPACITY AND IMPATIENCE

E[Qc|Qs = 0] ∼ min
{

ρ
1−ρ ,

√
λc
θc

}
EXCESS CAPACITY “WINS”: M/M/1 QUEUE

IGNORES ABANDONMENT
IMPATIENCE “WINS”: M/M/1+M QUEUE

CRITICALLY-LOADED, IGNORES EXCESS CAPACITY

IN HEAVY TRAFFIC,M/M/1+M ∼ M/M/1 WHEN
√
θ ≪ 1− ρ (WARD AND GLYNN, 2003)

ONLY EXCESS CAPACITY OR IMPATIENCE MATTERS - NOT BOTH

PATIENT CUSTOMERS: COI SENSITIVE TO SMALL CHANGES IN EXCESS CAPACITY, ρ
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ABILITY TO ACCUMULATE “INVENTORY” OF SERVERS

Theorem (Cost-of-Impatience Scaling by Operating Regime).

Customer Impatience

Se
rv
er
Im
pa
tie
nc
e

Patient-Customer Impatient-Customer

Im
patient-Server

Patient-Server
θmin

ρ

1− ρ

√
θminλc

√
θminλce

−λs
θs
(1−ρ)2H(ρ)θc

ρ

1− ρ

√
θs
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1
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e−
λs
θs

(1−ρ)2H(ρ)

PATIENT CUSTOMERS: NOT JUST REDUCTION TO SINGLE-SIDED CUSTOMER QUEUE
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ONLY THE MOST PATIENT TYPE MATTERS (min {θc, θs})

MAXIMUM ABANDONMENT RATE (θc):

λc = 90, λs = 100, θs = 30

CoI Approximation Ratio

Exact CoI ∼ 1

Maximum CoI: λc
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MINIMUM ABANDONMENT RATE (θs):

λc = 90, λs = 100, θc = 400

CoI Approximation Ratio

Exact CoI ∼
√
θs

Maximum CoI: λc
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IT ONLY MATTERS THAT ONE TYPE IS “PATIENT ENOUGH”

LOWER MATCH LOSS =⇒ FOCUS ON MOST PATIENT TYPE

WAITING SERVERS OFFSET MATCH LOSS
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PATIENT SERVERS OFFSET MATCH LOSS

Theorem (Cost-of-Impatience Scaling by Operating Regime).

Customer Impatience
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WHAT IS THE OPTIMAL CAPACITY LEVEL?
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OPTIMAL CAPACITY: LOGARITHMIC SCALING IN ABANDONMENT COST

Lemma (Optimal Capacity Scaling).
The optimal safety capacity, λ∗

s − λc ,
that balances abandonment and
capacity costs, ca and cs , is:

λ∗
s − λc ∼ γ

√
θminλc

where
λ∗
s =

argminλs≥λc
{caθcE[Qc] + csλs}.

λc = 100, θc = θs = 50, cs = 1

M/M/1+M queue: γ =
√

ca/cs

Two-sided queue: γ ≤
√

log(ca/cs)
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ABILITY TO HOLD INVENTORY OF SERVERS =⇒ SLOWER SCALING OF CAPACITY
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ONGOING WORK: TRADE-OFF BETWEEN MATCH QUALITY AND EFFICIENCY

SUPPLY DEMAND

TYPE O- (UNIVERSAL DONOR)

TYPE O- (HIGH REWARD)

TYPE AB+ (LOW REWARD)

WHAT IS THE OPTIMAL TIMING OF MATCHES?
18



THE SIMPLEST MATCHING MODEL INVOLVING A MATCH DECISION

λa

λb

λs

θc

θc

θs

ra

rb

SUPPLY DEMAND

GOAL: IDENTIFY NEARLY OPTIMAL POLICIES (SPECIFIC POLICY FOR ANY COMBINATION OF PARAMETERS)

SCALING LAWS: LOWER BOUND ON MATCH LOSS

OUR FOCUS: SIMPLE MODEL, UNIVERSAL RESULTS (IN PARAMETERS) & GENERAL CHARACTERIZATION
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THANK YOU!
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